
Uncertainty Quantification Tools for Multiphase Flow
Simulations using MFIX

X. Hu1, A. Passalacqua2, R. O. Fox1

1Iowa State University, Department of Chemical and Biological Engineering, Ames, IA
2Iowa State University, Department of Mechanical Engineering, Ames, IA

Project Manager: Steve Seachman

University Coal Research and Historically Black Colleges and Universities
and Other Minority Institutions Contractors Review Conference

Pittsburgh, June 11th – 13th 2013

X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 1 / 44



Outline

1 Introduction and background

2 Project objectives and milestones

3 Technical progress
Univariate case
Multivariate case
Code structure

4 Future work

X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 2 / 44



Introduction and background

Outline

1 Introduction and background

2 Project objectives and milestones

3 Technical progress
Univariate case
Multivariate case
Code structure

4 Future work

X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 3 / 44



Introduction and background

Background and motivations

Eulerian multiphase models for gas-particle flows
Widely used in both academia and industry

Computationally efficient

Directly provide averaged quantities of interest in design and
optimization studies

Need of uncertainty quantification
Study how the models propagate uncertainty from inputs to outputs

Main objectives
Develop an efficient quadrature-based uncertainty quantification
procedure

Apply such a procedure to multiphase gas-particle flow simulations
considering parameters of interest in applications
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Introduction and background

Typical steps in a simulation project with MFIX

Define model
geometry

Specify model 
parameters (phase 

properties, sub-
models)

Phase velocities
U(t)

Phase volume 
fractions
α(t)

Granular 
temperature

Θ(t)

MFIX

Comparison with experiments Design optimization

Time average
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Introduction and background

Models and uncertainty

Models present a strongly non-linear relation between inputs and outputs
Input parameters are affected by uncertainty

Experimental inputs
Experimental errors
Difficult measurements

Theoretical assumptions
Model assumptions might introduce uncertainty

Need to quantify the effect of uncertainty on the simulation results
Uncertainty propagation from inputs to outputs of the model
Multiphase models are complex: non-intrusive approach

Generate a set of samples of the results of the original models
Use the information collected from samples to calculate statistics of the
system response
Reconstruct the distribution of the system response
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Project objectives and milestones

Project tasks

Uncertainty quantification tools for multiphase gas-solid flow simulations using MFIX

Task 2.0  
Formulation of 

robust non- 
intrusive 

quadrature-based 
UQ approach

Task 3.0 
Implementation of 

the quadrature-
based procedure 

into MFIX

Task 4.0
Application to 

gas-particle flow 
test cases

Task 2.1  
Formulation of 
the quadrature-

based UQ 
procedure

Task 2.2
Validation on a set 
of simplified test 

cases

Task 3.1 
Implementation of 

the quadrature-
based UQ algorithm

Task 3.2 
Development of tools 

for automated 
sample processing 

and data post-
processing

Task 4.2
 UQ on bubbling 

fluidized bed 
simulations

Task 4.3
 UQ on r iser flow 

simulations

Task 1.0  
Project 

management 
plan

Task 4.1
Development of a 

validation 
criterion for 

MFIX simulations
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Project objectives and milestones

Project milestones and current status

Milestone 
n.

Description Due on Status

1 Submission of project management plan Dec. 30, 2011 Completed

2 Formulation of the quadrature-based UQ procedure Jul. 1, 2012 Completed

3 Validation of the quadrature-based UQ procedure on 
simplified test-cases

Oct. 1, 2012 Completed

4 Implementation of the quadrature-based UQ algorithm 
into MFIX

May 31, 2013 Completed

5 Development of automated tools for processing 
input/output data

Oct. 1, 2013 In progress, 
on time

6 Development of a Validation Criterion for MFIX 
Simulations

Jan. 3, 2014 Starts on
Oct. 10, 2013

7 UQ on bubbling fluidized bed simulations Mar. 31, 2014 Starts on
Oct. 10, 2013

8 UQ on riser flow simulations Sept. 1, 2014 Starts on
Apr. 1, 2014

9 Preparation of final report Sept 31, 2014 Starts on
Sept. 1, 2014
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Technical progress

Basic concepts

We study propagation of uncertainty from inputs to outputs
Sample the space of the uncertain input parameters of the model

1D: Gauss quadrature fomulae
Multi-dimension: Conditional quadrature method of moments (CQMOM)

The moments (statistics) of the model results are the quantity of interest
Low-order statistics for practical purposes (mean, variance, . . . )
Reconstructed PDF of the response

1D: Extended quadrature method of moments (EQMOM)
Multi-dimension: Extended conditional quadrature method of moments
(ECQMOM)
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Technical progress Univariate case

Extended quadrature method of moments (EQMOM)

The foundation of the method:

fn(κ) =

n∑
i=1

ρiδσ(κ, κi)

where
n is the number of non-negative kernel functions
ρi is the i-th quadrature weight used in the PDF reconstruction
δσ(κ, κi) is the kernel density function

The choice of the kernel density function δσ(κ, κi)

Beta kernel function: κ on bounded interval [a, b]
Gamma kernel function: positive κ on [0,+∞[
Gaussian distribution: κ on the whole real set

The key advantage of the method
The reconstructed PDF can be used to determine the probability of critical
events, like for κ > κcutoff
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Technical progress Univariate case

Beta EQMOM

Beta kernel function is defined as

δσ(κ, κi) =
κλi−1 (1− κ)µi−1

B (λi, µi)

where λi = κi/σ, µi = (1− κi)/σ, and κ ∈ [0, 1]

The system response can be represented as

fn(κ) =

N∑
i=1

ρiδσ(κ, κi) =

N∑
i=1

ρi
κλi−1 (1− κ)µi−1

B (λi, µi)

We need to determine the parameters λi and σ
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Technical progress Univariate case

Beta EQMOM

The n-th order integer moment of δσ(κ, κi) for n ≥ 1 is

m(i)
n =

κi + (n− 1)σ

1 + (n− 1)σ
m(i)

n−1 = m(i)
0

n−1∏
j=0

κi + jσ
1 + jσ

where m(i)
0 = 1

So the integer moments of fn can be expressed as

mn =

N∑
i=1

ρiGn(κi, σ)

where

Gn(κi, σ) =

{
1 n = 0∏n−1

j=0
κi+jσ
1+jσ n ≥ 1

and Gn is a polynomial
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Technical progress Univariate case

Beta EQMOM

We then re-write the integer moments as

mn = γnm∗
n + γn−1m∗

n−1 + . . .+ γ1m∗
1, γn ≥ 0

where

m∗
n =

N∑
i=1

ρiκ
n
i

The non-negative coefficients γn depend only on σ, for example, up to
n = 4,

m0 = m∗
0

m1 = m∗
1

m2 = 1
1+σ (m∗

2 + σm∗
1)

m3 = 1
(1+2σ)(1+σ)(m∗

3 + 3σm∗
2 + 2σ2m∗

1)

m4 = 1
(1+3σ)(1+2σ)(1+σ)(m∗

4 + 6σm∗
3 + 11σ2m∗

2 + 6σ3m∗
1)
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Technical progress Univariate case

Beta EQMOM

The algorithm to solve for σ is:
1 Guess σ
2 Compute the moments m∗

n from the system A(σ)m∗ = m
3 Use the Wheeler algorithm to find weights and abscissas from m∗

4 Compute m∗
2N using weights and abscissas

5 Compute

JN(σ) = m2N − γ2Nm∗
2N − γ2N−1m∗

2N−1 − . . .− γ1m∗
1

6 If JN(σ) 6= 0, compute a new guess for σ and iterate from step 1 until
convergence

The normalized distribution for κ in bounded interval [a, b] is

fn(κ) =
1

b− a

N∑
i=1

ρi

(
κ−a
b−a

)λi−1 (
b−κ
b−a

)µi−1

B (λi, µi)
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Technical progress Univariate case

Example applications

Test cases
Developing channel flow
Oblique shock problem

The convergence of the moments was reported in the last presentation
Reconstruct the PDF of the system response at specific locations

Developing channel flow – axial velocity

{
on the channel centerline
near the wall

Oblique shock problem – horizontal velocity

{
in the shock
below the shock

Comparison of the reconstructed PDFs with histograms obtained with
direct sampling
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Technical progress Univariate case

Developing channel flow
D

L

Mesh: 65 x 256 cells

Steady state solution

Convergence criterion:
residuals below 1.0x10−12

Incompressible solver:
simpleFoam
(OpenFOAM R©)

Properties

L/D = 6

Re = DU/ν0 = 81.24

σ(ν) = 0.3ν0

Uniform inlet
(Le Mâitre et. al., 2011)

Performed study
Convergence of the
moments

Statistics of the response

Reconstruction of the PDF
of system response

X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 19 / 44



Technical progress Univariate case

Developing channel flow
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Conclusions
The approximate distributions show good agreement with the histograms
obtained from 1000 samples

Four nodes are enough to reconstruct the axial velocity distribution
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Technical progress Univariate case

The oblique shock problem

θ

β

Ma
1

Ma
2

U
1

Oblique shock

Properties

Ma = |U|/a = 3

Ma ∈ [2.7, 3.3]

tan θ = 2 cotβ Ma2
1 sin2 β−1

Ma2
1(γ+cos(2β)+2

Mesh: 640 x 320 cells

Unsteady simulation (max
CFL = 0.2)

Compressible solver:
rhoCentralFoam
(OpenFOAM R©)

Performed study
Statistics of the response

Reconstruction of the PDF
of system response
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Technical progress Univariate case

The oblique shock problem: in the shock
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Conclusions
The distribution displays a step function profile

The approximate distribution shows some oscillations

Increasing the number of EQMOM nodes leads to a reduction of the
oscillatory behavior
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Technical progress Univariate case

The oblique shock problem: in the shock
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Conclusions
The reconstruction of the PDF improves slightly when the number of
EQMOM nodes increases

Increasing the number of EQMOM nodes requires higher order moments
to be computed, whose accuracy decreases with the order

Considering both the calculation accuracy and the shape of the
reconstructed PDFs, four nodes are adequate
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Technical progress Univariate case

The oblique shock problem: below the shock
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Conclusions
The approximate distributions show good consistency with the
histograms

Increasing the number of EQMOM nodes does not significantly
influence the quality of the reconstruction
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Technical progress Univariate case

Summary: EQMOM

The foundation of the method:

fn(κ) =

n∑
i=1

ρiδσ(κ, κi)

The choice of the kernel density function δσ depends on the support of
the distribution

Beta kernel function: κ on bounded interval [a, b]
Gamma kernel function: positive κ on [0,+∞[ (Yuan et al., 2012)
Gaussian distribution: κ on the whole real set (Chalons et al., 2010)

The reconstructed PDF can be used to determine the probability of
critical events, eg. for κ > κcutoff

The reconstructed PDFs show great agreement with histograms in the
case of smooth distributions, and satisfactory agreement with histograms
for the case with discontinuities
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Technical progress Multivariate case
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Technical progress Multivariate case

Conditional quadrature method of moments (CQMOM)

Sampling procedure for a case with two random variables ξ = ξ1, ξ2

ξ
1

ξ
2

p(ξ
1, 
ξ

2
) p(ξ

1
)

Find weights nl1 and nodes ξ1,l1

ξ
1

ξ
2

p(ξ
1, 
ξ

2
)

Use conditional moments 〈ξj
2〉l1 to

find weights nl1,l2 and nodes ξ2,l1,l2

Moments of the system response

〈un(ξ)〉 =

∫
R2

[u(ξ)]n p(ξ)dξ =

M1∑
l1=1

M2∑
l2=1

nl1nl1,l2 [u(ξ1,l1 , ξ2,l1,l2)]n

X. Hu, A. Passalacqua, R. O. Fox (ISU) Uncertainty quantification DOE-UCR Review Meeting 2013 27 / 44



Technical progress Multivariate case

The 2D test case

Packed bed heterogeneous catalytic reactor

v

L

C0 CB

ξ = 0 ξ = 1

Isothermal condition

First order reaction RB = kCB

Reaction rate coefficient
k = 0.7min−1

Neglected axial diffusion

Normalized position ξ = x/L

The concentration profile is

Ψ =
CB

C0
= exp

(
−kL

v
ξ

)
Two uncertain parameters

L and v
Bivariate Gaussian
distribution
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Technical progress Multivariate case

The 2D test case

The joint PDF is

p(v,L) =
1

2πσvσL
√

1− ρ2
exp

[
− z

2(1− ρ2)

]
where

z = (v−v0)
2

σ2
v
− 2ρ(v−v0)(L−L0)

σvσL
+ (L−L0)

2

σ2
L

L0 = 20m, σ2
L = 0.81; v0 = 14m/min, σ2

v = 0.64
Correlation coefficient ρ = 0, 0.5, 0.95

The covariance matrix is

Σ =

(
σ2

v ρσvσL

ρσvσL σ2
L

)
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Technical progress Multivariate case

The 2D test case

Moments of the output at the exit (ξ = 1) are calculated
Gauss-Hermite quadrature method
CQMOM

Relative errors are computed, assuming moments obtained by
Gauss-Hermite quadrature method with 30× 30 nodes are exact

en
Nv,NL

(ξ) =

∣∣∣mn
Nv,NL

(ξ)− mn
30,30(ξ)

∣∣∣
mn

30,30(ξ)

Nv and NL of CQMOM are directly calculated by adaptive Wheeler
algorithm, not the maximum number of nodes user provided

Relative errors obtained with different correlation coefficients ρ are listed
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Technical progress Multivariate case

The 2D test case: convergence of the moments

ρ = 0

CQMOM G-H quadrature
n en

4,4(1) en
5,4(1) en

7,3(1) en
5,5(1)

0 2.220× 10−16 2.220× 10−16 8.882× 10−16 0
1 5.475× 10−10 4.905× 10−12 1.184× 10−11 4.891× 10−12

2 8.673× 10−10 1.158× 10−11 1.698× 10−10 1.436× 10−11

3 8.408× 10−10 8.491× 10−11 6.172× 10−9 1.750× 10−11

4 3.352× 10−9 6.857× 10−10 9.100× 10−8 3.539× 10−11

5 8.542× 10−9 3.725× 10−9 6.190× 10−7 3.128× 10−11

6 1.483× 10−8 1.560× 10−8 2.901× 10−6 6.094× 10−11

7 3.867× 10−8 5.231× 10−8 1.084× 10−5 2.521× 10−10

8 1.246× 10−7 1.479× 10−7 3.487× 10−5 1.341× 10−9

9 3.551× 10−7 3.675× 10−7 0 3.944× 10−9

Table : Relative errors of zeroth to ninth order moment of the output
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Technical progress Multivariate case

The 2D test case: convergence of the moments

ρ = 0.5

CQMOM G-H quadrature
n en

4,4(1) en
5,4(1) en

6,3(1) en
5,5(1)

0 2.220× 10−16 0 1.110× 10−16 0
1 2.149× 10−10 5.153× 10−12 3.102× 10−11 5.145× 10−12

2 2.500× 10−10 7.550× 10−13 1.952× 10−9 3.532× 10−13

3 2.144× 10−9 2.543× 10−12 2.192× 10−8 1.325× 10−11

4 9.023× 10−9 1.582× 10−10 1.213× 10−7 6.613× 10−12

5 2.812× 10−8 9.883× 10−10 4.558× 10−7 2.062× 10−11

6 7.920× 10−8 4.126× 10−9 1.339× 10−6 5.293× 10−11

7 2.016× 10−7 1.384× 10−8 3.321× 10−6 1.010× 10−10

8 4.629× 10−7 3.975× 10−8 7.272× 10−6 2.636× 10−10

9 9.687× 10−7 1.012× 10−7 1.448× 10−5 8.231× 10−10

Table : Relative errors of zeroth to ninth order moment of the output
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Technical progress Multivariate case

The 2D test case: convergence of the moments

ρ = 0.95

CQMOM G-H quadrature
n en

4,2(1) en
5,3(1) en

6,3(1) en
5,5(1)

0 0 2.220× 10−16 2.220× 10−16 0
1 3.120× 10−9 2.247× 10−12 2.375× 10−12 2.297× 10−12

2 5.343× 10−8 7.513× 10−12 3.060× 10−11 3.280× 10−12

3 2.695× 10−7 5.526× 10−11 9.920× 10−11 6.539× 10−12

4 8.479× 10−7 2.775× 10−10 9.163× 10−11 4.752× 10−12

5 2.061× 10−6 1.034× 10−9 4.289× 10−10 8.871× 10−13

6 4.257× 10−6 3.064× 10−9 2.472× 10−9 7.642× 10−12

7 7.854× 10−6 7.684× 10−9 7.937× 10−9 1.273× 10−11

8 1.334× 10−5 1.703× 10−8 2.000× 10−8 1.416× 10−11

9 2.129× 10−5 3.432× 10−8 4.355× 10−8 1.104× 10−11

Table : Relative errors of zeroth to ninth order moment of the output
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Technical progress Multivariate case

The 2D test case: summary

Moments converge rapidly for both methods (less than 5× 5 nodes)

Relative errors of moments calculated by CQMOM are slightly larger
than those obtained by Gauss-Hermite quadrature method

CQMOM provides an accurate method when only pure moments of the
joint PDF of the inputs are known
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Technical progress Multivariate case

Reconstruction of the 2D joint PDF

Method for correlation coefficient ρ = 0
(Chalons et al., 2010; Vié et al., 2011)

For non-zero ρ: extended conditional quadrature method of moments
(ECQMOM)

Reconstruct the bivariate Gaussian distribution of the uncertain inputs of
the 2D test case (v and L) using ECQMOM

f12(v,L) =

2∑
α=1

wαg(v; vα, σ1)

 2∑
β=1

wαβg(L− l(v); Lαβ, σ2α)


where g is the standard Gaussian distribution

g(x;µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
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Technical progress Multivariate case

Reconstrunction of the 2D joint PDF

ρ = 0.5 ρ = 0.95

Find σ1, weights w1 and w2, and nodes v1 and v2 in the v direction

Solve for conditional moments µk
α

Find σ2α, weights wαβ , and nodes Lαβ in the L direction

2D Gaussian ECQMOM provides an accurate method to reconstruct the
joint PDF
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Technical progress Code structure

Pre-processing of the data

Identify important parameters
(random input variables)

Identify test cases of interest

Determine the number of required 
samples to obtain the desired 
accuracy on the output PDF

Generate quadrature nodes and 
weights

Compute outputs using generated 
nodes as input to MFIX models

Compute time averages of outputs 
of interest

Particle-size distribution

Restitution coefficients

Wall boundary conditions

Sphericity

Frictional stress threshold

Bubbling fluidized bed

Riser flow

Gauss quadrature formula for 1D

CQMOM for multi-dimension

Standard MFIX model

GHD kinetic theory

MFIX-QMOM

Phase velocities

Phase volume fractions

Pressure drop

Granular temperature

No-slip

Partial slip

Specularity 
coefficient

Princeton model

Schaeffer model
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Technical progress Code structure

Post-processing of the data

Compute moments of outputs

Mean

Variance

Skewness

Kurtosis

Reconstruct the output PDF with 
EQMOM according to histograms

Beta-EQMOM

Gamma-EQMOM

Guass-EQMOM
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Future work
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Univariate case
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4 Future work
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Future work

Future work

Development of automation tools for pre- and post-processing of the
MFIX data

Applications to gas-particle flow in fluidized beds and risers
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Future work

Budget

DOE UCR – FE0006946 
Cost plan status

Baseline Reporting Quarter Budget Period 1 Budget Period 2

Q3 Q4 Q1 Q2

Apr. 1, 2012 - Jun. 30, 2012 Jul. 1, 2012 - Sept. 30, 2012 Oct 1. 2012 - Dec. 31, 2012 Jan. 1, 2013 - Mar. 31, 2013

Q3 Cumulative total Q4 Cumulative total Q1 Cumulative total Q2 Cumulative total

Baseline cost plan

Federal share 26292 74821 22237 97058 27557 124615 22905.00 147520.00

Non-federal share 1850 5550 1850 7400 1850 9250 1850.00 11100.00

Total planned 28142 80371 24087 104458 29407 133865 24755.00 158620.00

Actual incurred cost

Federal share 23114.62 45237.2 19329.47 64566.67 10016.79 74583.46 28337.38 102920.84

Non-federal share 1850 5550 1850 7400 1850 9250 1850.00 11100.00

Total incurred costs 24964.62 50787.2 21179.47 71966.67 11866.79 83833.46 30187.38 114020.84

Variance

Federal share -3177.38 -29583.8 -2907.53 -32491.33 -17540.21 -50031.54 5432.38 -44599.16

Non-federal share 0 0 0 0 0 0 0.00 0.00

Total variance -3177.38 -29583.8 -2907.53 -32491.33 -17540.21 -50031.54 5432.38 -44599.16
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Future work

Personnel and publications

Personnel
1 Assistant professor (Alberto Passalacqua) from October 2011

1 Ph.D. student (Xiaofei Hu) from June 2012

Publications
X. Hu, A. Passalacqua, R.O. Fox, P. Vedula, A quadrature-based
uncertainty quantification approach with reconstruction of the
probability distribution function of the system response, SIAM/ASA
Journal on Uncertainty Quantification, under review.

X. Hu, A. Passalacqua, R.O. Fox, P. Vedula, A quadrature-based
uncertainty quantification approach with reconstruction of the
probability distribution function of the system response in bubbling
fluidized beds, 2013 AIChE Annual Meeting, San Francisco.
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Future work

Thanks for your attention!

Questions?
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